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Fluid injection into the deep subsurface, such as injection of carbon dioxide (CO2) into
deep saline aquifers, often involves two-fluid flow in confined geological formations.
Similarity solutions may be derived for these problems by assuming that a sharp
interface separates the two fluids, by imposing a suitable no-flow condition along
both the top and bottom boundaries, and by including an explicit solution for the
pressure distribution in both fluids. When the injected fluid is less dense and less
viscous than the resident fluid, as is the case for CO2 injection into a resident brine,
gravity override produces a fluid flow system that is captured well by the similarity
solutions. The similarity solutions may be extended to include slight miscibility
between the two fluids, as well as compressibility in both of the fluid phases. The
solutions provide the location of the interface between the two fluids, as well as drying
fronts that develop within the injected fluid. Applications to cases of supercritical
CO2 injection into deep saline aquifers demonstrate the utility of the solutions, and
comparisons to solutions from full numerical simulations show the ability to predict
the system behaviour.

1. Introduction
Fluids are injected into confined porous media around the world for the purposes

of enhanced oil recovery, gas storage and waste disposal (see, for example, Donaldson
1964; US Environmental Protection Agency 1985; Smith 1996; Bachu & Gunter
2004). When the injected fluid is immiscible with the resident fluid(s), a multi-phase
flow problem results with no inter-phase mass transfer. When the injected fluid is
slightly miscible with the resident fluid, then mass transfer between fluids may need
to be included in the analysis. In this paper, we consider injection into a porous
formation that is confined above and below by impervious caprock formations, with
slight miscibility between the injected fluid and the resident fluid. We show that the
interface between the injected fluid and the resident fluid, as well as the drying front
associated with residual fluid evaporating into the injected fluid, has an asymptotic
solution in the form of a self-similar shape.

There are many solutions for interface propagation in the literature that are based
on self-similarity. These include the pioneering work of Barenblatt and co-workers (see
Barenblatt 1990; Barenblatt 1996 and references therein), and, among many others,
the work of Woods and co-workers that includes multiple layers (Huppert & Woods
1995; Woods & Mason 2000; King & Woods 2003) and reaction fronts (Raw & Woods
2003; Jupp & Woods 2003). While these solutions are elegant and have significant
practical applications, they are derived for systems with incompressible fluids, and
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almost always applied to unconfined formations. In the current work, we consider the
case of continuous injection into a confined formation. Our overall solution includes
mass transfer between the two fluids, and allows for fluid compressibilities to be
included in the solution.

As a practical application of this model, we consider injection of carbon dioxide
(CO2) into deep saline aquifers. This has been proposed as a means of reducing
anthropogenic emissions of CO2 into the atmosphere (e.g. Bruant et al. 2002). Several
commercial-scale operations are already active (for example, Torp & Gale 2004;
Holloway et al. 2004), although thousands more are required to make an impact
on global warming (Pacala & Socolow 2004). For efficiency of storage, CO2 will
typically be injected as a supercritical fluid (that is, in conditions where pressure
and temperature both exceed their critical values), thereby requiring injection depths
greater than about 800 m. At these conditions, CO2 remains less dense and less viscous
than the resident brine (Bachu 2003), thus we expect the injection profile to show
significant gravity override (Nordbotten et al. 2005b). Further, as CO2 displaces brine,
some of the brine is left behind in immobile pockets, resulting in a so-called residual
saturation of the brine, where saturation is defined as the fraction of void space filled
with brine, and the term ‘residual’ implies that the brine is immobile. We expect to see
residual brine and CO2 equilibrate behind the CO2–brine interface owing to the slight
solubility of CO2 in water (Enick & Klara 1990). Because CO2 is typically injected as
a dry phase, some of the residual brine will evaporate into the dry CO2, forming an
invading CO2 front that is saturated with water (we refer to this as wet CO2). The
evaporation of the residual water eventually leads to the formation and propagation
of a drying front behind the main CO2 invasion front, where behind the drying front
no water is present.

Our model will apply to injection into a planar, horizontally homogeneous confined
aquifer. We will make vertical equilibrium assumptions and seek to reduce the
system of governing partial differential equations to a system of ordinary differential
equations in a single similarity variable. We present the solution as a series of
increasingly complex problems, beginning with the incompressible and non-reactive
case, then including reaction, and finally including full fluid compressibility. Example
calculations are used to demonstrate the behaviour of the solution, and include
comparisons to full numerical solutions of the modelled systems.

2. Problem statement
The problem of interest is injection of an invading fluid, such as carbon dioxide,

into a confined subsurface formation that contains a different resident fluid, such as
brine. The injected fluid will move radially outward from the well. Because of density
differences between the two fluids, gravity override will occur. If the injected fluid
is less viscous than the ambient fluid, viscous instability will combine with gravity
override to enhance the invasion of injected fluid along the top of the formation. For
cases of viscous domination, the system is described well by the solution of the radial
Buckley–Leverett equation, subject to buoyant segregation of the fluids, which was
shown in Nordbotten et al. (2005b). In that paper, a simplified solution was derived
based on minimum energy principles, for the case when buoyancy acts to segregate
the fluids, but does not otherwise play a significant role. The result was an equation
like that given by (14) in the present paper. That solution is a simple case of the more
general solution derived herein. The work of Nordbotten et al. (2005b) also proposed
a heuristic solution for the case when buoyancy is more dominant, but the basis of
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Figure 1. Schematic diagram showing a typical plume of injected fluid of thickness h(r, t)
trailed by a drying front denoted by i(r, t). The outer extents of h(r, t) and i(r, t) are denoted
r0,h(t) and r0,i(t).

that argument was not well constructed, and the present development is much more
rigorous and general in its development. When buoyancy becomes important, the
simple Buckley–Leverett solution in Nordbotten et al. (2005b) is no longer adequate,
and a more general approach must be used.

In the present work, we allow for strong buoyant drive, within an aquifer of height
H that is confined both above and below. We will further allow for miscibility of
the fluids, which is consistent with the behaviour of CO2 and brine. We will also
allow for pressure dependence of fluid densities and viscosities. We ignore capillary
pressure effects in the solution. Under these conditions, the injected fluid, which we
take to be CO2, forms an invasion front in the (r, z)-plane, with its thickness denoted
by h(r, t) (with units [L]), as shown in figure 1. Behind this front resides invading
CO2 along with whatever residual brine saturation exists after the invasion. Because
we allow for equilibrium mass transfer between the two fluid phases (thus modelling
phase partitions as instantaneous), the residual brine will be saturated with dissolved
CO2. In addition, the CO2 will be saturated with water vapour. However, because the
injected CO2 is assumed to be dry, there will be a drying front that forms behind the
CO2 invasion front. Behind the drying front, all residual water has been evaporated in
the invading CO2. This drying front is denoted by i(r, t) [L] in figure 1. The problem
at hand is to derive solutions for h(r, t) and i(r, t), given a constant injection rate
Qwell [L3T−1] of CO2 into a confined formation of thickness H [L].

3. General theory and solution
We will present the similarity solutions in three progressively complex cases. This

approach has been chosen to make the presentation as accessible as possible, since
the equations involved and the derivation is much clearer for the less complex cases.
In the following two sections, we will first present the case of no mass transfer and
incompressible fluids, followed by the extension to include mass transfer between
the brine and the CO2. The full formulation including compressibility is included in
Appendix C.
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3.1. No mass transfer, incompressible fluids

To demonstrate the basic approach that accounts for confined aquifer conditions,
we first solve the simplest case associated with figure 1, which is the case for fully
immiscible and incompressible fluids. This case is analogous to the one described in
Huppert & Woods (1995), with the modifications that viscosity ratios not equal to
unity are included, and the formulation is in axisymetric coordinates. In this case the
only front in figure 1 is h(r, t), and all fluid properties are assumed to be constant.
The CO2 region just behind the invasion front h(r, t) has residual amounts of brine
saturation left behind. Let the fraction of pore space filled with residual brine be
denoted by Sres[L

0]. Typical values of Sres are between 5 and 20 % (Dullien 1992). We
will approximate the residual saturation to be constant behind the invading front. Let
the vertical coordinate z be defined as positive downward, and assume the system is
radially symmetric about an injection well from which CO2 is injected at a constant
rate into a brine-filled confined aquifer. We begin by writing the following equation
to describe the vertical variability of pressure for any given (r, t):

p(r, t, 0) = p(r, t, H ) −
h(r,t)∫
0

[
ρcg +

qc,z(r, t, z)µc

kzkr,c

]
dz −

H∫
h(r,t)

[
ρwg +

qw,z(r, t, z)µw

kzkr,w

]
dz.

(1)
In (1), subscripts c and w refer to CO2 and water, respectively. Density of fluid α

(α = c, w) is denoted by ρα [ML−3], g is the gravitational constant [LT−2], qα,z is the
z-component of the volumetric flux vector [LT−1], µα denotes the dynamic viscosity
of fluid α [M L−1T−1], kz is the permeability in the z direction [L2], and kr,α is
the relative permeability of the porous medium to fluid α[L0]. Darcy’s law has been
used to account for potential losses due to vertical flows. When the contribution
to the pressure variation in (1) from the flux terms is negligible, we can use the
assumption of vertical equilibrium. This is appropriate for systems in which the
vertical length scale is much smaller than the horizontal length scale (Huppert &
Woods 1995; see also Appendix D of this paper). Vertical equilibrium allows (1) to be
simplified as

p(r, t, 0) = p(r, t, H ) − (H − h(r, t))ρwg − h(r, t)ρcg. (2)

Equation (2) implies that knowledge of pressure at any point along z provides
pressures at all values of 0 � z � H .

Next the vertically integrated volume balance equation for each fluid is written
for this radial system. The approach follows standard vertical averaging as used in
aquifer descriptions, and as described in standard groundwater hydrology textbooks
such as Bear (1979). For example, the equation for the brine (equation (3b) below)
follows directly from the vertical integration of the point mass-balance equation, with
an assumption of essentially horizontal flow and radial symmetry. The resulting set
of equations for the CO2 and the brine may be written as:

−∂h

∂t
=

1

2πϕ(1 − Sres)

1

r

∂Qc

∂r
, (3a)

−∂(H − h)

∂t
=

1

2πϕ(1 − Sres)

1

r

∂Qw

∂r
, (3b)
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where φ denotes porosity [L0], Sres denotes residual saturation of the resident brine,
and the radially dependent vertically integrated flow rates Qα are defined by

Qc = −2πrhk
kr,c

µc

∂pc

∂r
, (4a)

Qw = −2πr(H − h)k
kr,w

µw

∂pw

∂r
. (4b)

In (4a, b), pα is the pressure in fluid α[ML−1T−2], and k denotes the permeability in
the horizontal direction [L2]. Note that the term ϕ(1 − Sres) in (3a, b) corresponds to
the ‘specific yield’ or ‘drainable porosity’ term that arises in groundwater hydrology
(Bear 1979, pp. 88, 99, 114). This term may be seen as a measure of the amount of
pore space that is invaded by CO2 as the front moves into the brine region of the
domain. Substitution of (2) and (4) into (3), and summation of (3a) and (3b), lead to
the following equation

0 =
k

ϕ(1 − Sres)r

[
∂

∂r

(
λchr

∂

∂r
(p − �ρgh)

)
+

∂

∂r

(
λw(H − h)r

∂p

∂r

)]
, (5)

where the pressure p, without any subscript, is defined as the pressure at the bottom
of the aquifer, that is, p ≡ p(r, t, H ). In (5), we have defined the phase mobility as
λα = kr,α/µα[LTM−1]. Integration of (5) implies that

C = λchr
∂

∂r
(p − �ρgh) + λw(H − h)r

∂p

∂r
. (6)

The constant of integration in (6), C, is evaluated by the condition that CO2 is injected
at a fixed rate given by Qwell. This condition implies that C = −Qwell/2πk.

Substitution for the integration constant in (6) and rearrangement allows the
pressure derivative to be written as

∂p

∂r
= [λch + λw(H − h)]−1

[
λch

∂

∂r
(�ρgh) − Qwell

2πrk

]
. (7)

The equation allows the confined pressure to be represented in the system. When
(7) is substituted into (3a), with appropriate substitutions for the flow and pressure
terms in the equation, an equation for the unknown interface location, h(r, t), may be
written,

∂h

∂t
=

�ρgkλw

ϕ(1 − Sres)r

∂

∂r

[
λch(H − h)r

λch + λw(H − h)

∂h

∂r
+

Qwell(H − h)

2π(λch + λw(H − h))

1

�ρgk

]
. (8)

More generally, we may define the following dimensionless groupings associated
with (8),

Γ ≡ 2π�ρgkλwH 2

Qwell

, λ ≡ λc

λw

,

τ ≡ Qwellt

2πHϕK(1 − Sres)
, η ≡ r√

k
, h′ ≡ h

H
.

⎫⎪⎪⎬
⎪⎪⎭ (9)
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Use of these groups simplifies (8) to the following,

∂h′

∂τ
=

1

η

∂

∂η

[
Γ λh′(1 − h′)η

λh′ + (1 − h′)

∂h′

∂η
+

1 − h′

λh′ + (1 − h′)

]
, (10)

where h′ = h′(η, τ ). Finally, (10) may be rewritten using the scaling variable χ ≡ η2
/
τ

to yield the following second-order differential equation in dimensionless form,

τ
∂h′

∂τ
− χ

∂h′

∂χ
= 2

∂

∂χ

[
1 − h′

1 + (λ − 1)h′

(
2Γ λχh′ ∂h′

∂χ
+ 1

)]
. (11)

In (11), the dependent variable is now interpreted as h′ = h′(χ, τ ). By expanding the
term in square brackets and dividing through by dh′/dχ , (11) can be written as a
partial differential equation of the following form,

τ
∂h′

∂τ

(
∂h′

∂χ

)−1

= χ −
[
1 + Γ λχ

∂(h′)2

∂χ

]
2λ

(1 + (λ − 1)h′)2

+ 4Γ λ
1 − h′

1 + (λ − 1)h′

(
h′ + χ

∂h′

∂χ
+ h′χ

∂2h′

∂χ2

(
∂h′

∂χ

)−1)
, (12)

where the condition that dh′/dχ �= 0 has been used. The time-dependent equation (12)
has the stationary solution (which is proved to be stable for small Γ in Appendix A),
which is a self-similar solution of the original problem (Barenblatt 1996) satisfying
the nonlinear second-order ordinary differential equation,

0 = χ −
[
1 + Γ λχ

d(h′)2

dχ

]
2λ

(1 + (λ − 1)h′)2
+ 4Γ λ

1 − h′

1 + (λ − 1)h′

×
(

h′ + χ
dh′

dχ
+ h′χ

d2h′

dχ2

(
dh′

dχ

)−1)
when

∂h′

∂χ
�= 0. (13)

This equation is analogous to the radial Buckley–Leverett equation given as (16) in
Blunt & King (1991). This analogy follows from interpreting saturation and capillary
pressure in their formulation as plume thickness and pressure difference from the top
to the bottom of the formation in our formulation.

We immediately see that for cases where the dimensionless grouping Γ , associated
with gravity, is negligibly small, (13) reduces to an algebraic expression which can be
inverted to give h′(χ):

h′ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for χ � 2/λ,

1

(λ − 1)

(√
2λ

χ
− 1

)
for 2/λ < χ < 2λ,

0 for χ � 2λ.

(14)

Equation (14) is the result derived by Nordbotten et al. (2005b), using arguments
of energy minimization and an a priori assumption that Γ is negligibly small. Note
that (14) is valid for all λ� 1. In the limit as λ goes to 1, (14) yields a solution that
approaches a piecewise constant, corresponding to piston-like displacement in the
formation. For values of λ less than 1, (14) does not capture the physical solution,
because it has an inherent assumption of gravity override in the shape of the front.
For the case of λ< 1, we use the solution of (13) that is the degenerate case of
dh′/dχ = 0, which means that the solution h′ is a piecewise constant function. This
again corresponds to the case of piston-like displacement.
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Solution of (13) when Γ is not negligible requires specification of appropriate
boundary conditions. The first is that there exists a finite innermost location where
h = 0, denoted by r0,h. The second condition is that the solution must satisfy the
volume balance

r0,h∫
0

ϕ(1 − Sres)h(r, t)2πrdr = Qwellt, (15)

where Qwellt is the cumulative injected volume of CO2, and the integral represents the
volume constrained by h(r, t). This condition may be restated in dimensionless form as

χ0,h∫
0

h′(χ)dχ = 2, (16)

where χ0,h is equal to η0,h(r0,h(t))
2/τ (t). The set of equations (13) and (16) may be

solved numerically for h′(χ), by choosing an initial guess for χ0,h (e.g. by using the
explicit solution obtained for Γ = 0), solving (13), and updating χ0,h iteratively to
satisfy (16). Notice that the constraint of (16) also allows the piecewise constant
solutions of (13) for the case of Γ = 0 and λ� 1 to be determined explicitly as

h′ =

{
0 for χ < 2,

1 for χ > 2,

where the discontinuity is chosen to satisfy the mass balance requirement of (16).
Once h′(χ) is determined, the variation in the pressure field may be calculated

based on (7), which may be rewritten in dimensionless variables as

−dp′

dχ
=

1

h′(λ − 1) + 1

[
h′λ

dh′

dχ
+

1

2Γ χ

]
, (17)

where p′ ≡ p/�ρgH . For an incompressible system in an infinite domain, the pressure
becomes unbounded as χ goes to 0 and infinity. For systems that are slightly
compressible, we can apply finite outer boundary conditions to the pressure equation
(17) by a limit condition at large radial distances χ∞ imposed as p(χ∞) = p0. The outer
boundary, moving as r2

∞(t) = Bt , with B a constant, is consistent with representation
of slight compressibility of the porous medium (Nordbotten et al. 2004, 2005b), and
is consistent with approaches such as the Cooper–Jacob expansion for well testing
(see discussion in Nordbotten et al. 2004).

3.2. Extension to include mass transfer and drying fronts

In this case, we assume that CO2 partitions into the brine, with the volume fraction of
CO2 in the residual brine denoted by β1 [L0]. Furthermore, assume the brine (water)
can evaporate into the CO2 phase, with the volume fraction of water vapour in the
CO2 phase denoted by β2 [L0]. Both of these fractions are small, of the order of a
few per cent (Enick & Klara 1990). We assume the injected fluid is dry CO2, with no
water vapour. Therefore the injected CO2 can evaporate the residual water, eventually
leading to a drying front, which is denoted by i(r, t) in figure 1. Between the fronts
i(r, t) and h(r, t) exists a region of residual CO2-saturated brine and ‘wet’ CO2, while
behind the front i(r, t) is only dry CO2.

The procedure to derive expressions for the two fronts is analogous to that presented
in the previous section, except now we have two fronts and three flow regions. Define
the radially dependent vertically integrated volumetric flow rates for the three fluids
as Qw, Qc and Qcw, where subscript w denotes water, c denotes dry CO2, and cw
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denotes wet CO2. Mass conservation for each fluid may be written as

−2πrϕ
∂(H − h)

∂t
=

γ1

1 − Sres

∂Qw

∂r
, (18a)

−2πrϕ
∂i

∂t
=

γ2

1 − Sres

∂Qc

∂r
, (18b)

Qcw + Qc + Qw = Qwell. (18c)

Equation (18c) expresses the vertically integrated statement of divergence-free flows,
which follows from the incompressibility of the system. In (18a) and (18b), the factor
(1−Sres) accounts for the change in saturation across the front h(r, t), while the factors
γ1 and γ2 take account of mass exchange between brine and CO2. The dimensionless
factors γ1 and γ2 are derived in Appendix B, and take the forms

γ1 =

[
1 +

β1Sres

(1 − Sres)(1 − β2)

]−1

, γ2 =

[
1 +

(1 − β1)Sres

(1 − Sres)β2

]−1

,

where β1 and β2 are as defined previously. The vertically integrated flow rates Qα in
(18) are defined by

Qc = −2πrik
kr,c

µc

∂pc

∂r
, (19a)

Qcw = −2πr(h − i)k
kr,cw

µcw

∂pcw

∂r
, (19b)

Qw = −2πr(H − h)k
kr,w

µw

∂pw

∂r
. (19c)

The form of these equations may be derived by simple extension of (3) and (4). In
particular, the right-hand side of Equation (18a) is modified by the factor γ1, as
compared to (3a), because now the volume fraction that is relevant corresponds to
the amount of pore space invaded by wet CO2, modified by the fact that some of
the invading CO2 partitions into the newly formed residual brine behind the front
h(r, t). Similar arguments apply to the other terms in the set of vertically–averaged
mass balance equations.

For this case, the vertical equilibrium assumption (2) gives us the relationships

∂

∂r
pcw =

∂

∂r
(pw + (ρw − ρcw)gh),

∂

∂r
pc =

∂

∂r
(pw + (ρw − ρcw)gh + (ρcw − ρc)gi).

Inserting (19a–c) into (18a–c) and using the vertical equilibrium assumption leads to

d

dχ
h′ =

4Γ γ1

χ

d

dχ

(
(1 − h′)χ

d

dχ
p′

)
, (20a)

− d

dχ
i ′ =

4γ2Γ λ1

χ

d

dχ

(
i ′χ

d

dχ
(p′ + h′ + ϑi ′)

)
, (20b)

d

dχ
p′ = −

1

2Γ χ
+ (λ2h

′ + (λ1 − λ2)i
′))

d

dχ
h′ + λ1i

′ϑ
d

dχ
i ′

λ2(h′ − i ′) + λ1i + (1 − h′)
, (20c)

where the new dimensionless groupings are defined as

λ1 =
λc

λw

, λ2 =
λcw

λw

, ϑ =
ρcw − ρc

ρw − ρcw

. (21)
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Note that p′ and Γ are defined in terms of the difference in density between the water
and wet CO2:

p′ =
p

(ρw − ρcw)gH
, Γ ≡ 2π(ρw − ρcw)gkλwH 2

Qwell

, (22)

and the volume balance equation (16) must be modified so that it correctly accounts
for the phase partitioning;

χ0,h∫
0

h′(χ) dχ = 2γ1. (23)

Two additional conditions are required to solve for the interface i ′ ≡ i/H in (20b).
The first is that there exists a finite innermost location where i ′ =0, denoted by χ0,i .
The second condition is a volume balance equation analogous to (23);

χ0,i∫
0

i ′(χ) dχ =
γ2

γ1

χ0,h∫
0

h′(χ) dχ = 2γ2. (24)

We see that (20c) can be used to eliminate dp′/dχ in (20a) and (20b), such that
only two of equations (20) are coupled. These equations must be solved numerically,
leading to solutions for both the initial invasion front and the drying front.

With assumptions that wet and dry CO2 have the same density and mobility, the
pressure equation (20c) simplifies, and (20a) and (20b) can be rewritten as a set of
decoupled ordinary differential equations given by

dh′

dχ
= 2γ1χ

−1 d

dχ

[
h′ − 1

h′(λ − 1) + 1

(
2Γ λh′χ

dh′

dχ
+ 1

)]
, (25)

di ′

dχ
= 2γ2λχ

−1 d

dχ

[
i ′

h′(λ − 1) + 1

(
2Γ (h′ − 1)χ

dh′

dχ
+ 1

)]
. (26)

Equations (25) and (26) are subject to the same conditions as listed in the previous
section for the unknown h′(χ)and i ′(χ), which are equations (23) and (24), together
with the conditions that there exists χ0,h and χ0,i where h′(χ0,h) = 0 and i ′(χ0,i) = 0.

Evaluating (26) at χ0,i , we see that a non-zero derivative di ′/dχ can exist only when

1 =
2γ2λ

h′(λ − 1) + 1

[
2Γ (h′ − 1)

dh′

dχ
+

1

χ

]
. (27)

Therefore, (27) yields the point χ0,i , which is the minimum value of χ for which i ′ = 0.
The equation set (25)–(26) may be solved sequentially for the two fronts, h′(χ) and
i ′(χ), where an analogous iterative method to that employed for finding h′ can be
used for i ′. When Γ = 0, we can obtain an explicit expression for h′ and i ′, similar to
(14):

h′ =
1

(λ − 1)

(√
2λγ1

χ
− 1

)
, i ′ = c

(
γ2

√
2λ

γ1χ
− 1

)
, (28)

where the integration constant c can be evaluated by (24) or (27),

c =

(
λ
γ2

γ1

− γ1

)−1

.
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Aquifer thickness 15 m
Aquifer permeability 20 mD
Aquifer porosity 0.15
CO2 viscosity 0.061 mPa s
Water viscosity 0.511 mPa s
CO2 density 733 kg m−3

Water density 1099 kgm−3

Injected volume 1.2 × 106 m3

Table 1. Problem set-up and relevant parameters for the injection problem example case.

We recall from the discussion following (14) that the expression for h′ is valid for
λ> 1. Similarly, as the mass transfer factor γ2 approaches γ 2

1 /λ from above, the
expression for i ′ approaches a step function. For γ2 � γ 2

1 /λ, a piecewise constant
solution satisfying (24) should be applied.

4. Results
To show how the solutions behave over a range of parameters, we consider solutions

to a problem of constant injection of CO2 into a saline aquifer, with both brine and
CO2 having constant properties. We first run a set of test problems that are also
solved with a commercial numerical simulator, and compare the similarity solutions
to full numerical solutions of the same problem. We then examine how the similarity
solution behaves over a range of dimensionless parameter values, to show solution
dependence on the key dimensionless parameters in the system. Finally, we examine
the vertical equilibrium assumption over a range of flow conditions, to assess its
applicability to the problem of carbon dioxide injection and transport.

The problem set-up is shown in figure 1, and relevant parameters for the injection
problem are given in table 1. The problem corresponds to injection into a deep
cold formation as identified in Nordbotten et al. (2005b), for which fluid properties
are defined based on a typical hydrostatic pressure gradient of 10.5 MPa km−1, and
geothermal gradient of 25 Kkm−1, resulting in temperature and pressure in the
formation of 85◦C and 31.5 MPa. Rock properties are taken to correspond to typical
sedimentary formations in the Alberta Basin, as used previously by Nordbotten et al.
(2005a, b). Injection rates are varied to span a range of practical injection rates, and
to cover a corresponding reasonable set of values for the dimensionless parameter
Γ . The injection rates range from a ‘medium’ injection rate of 120 m3/day, which
yields a relatively small value for Γ of 0.143, to ‘low’ (12 m3/day) and then ‘very low’
(1.7 m3/day) injection rates, corresponding to Γ values of 1.43 and 10, respectively.
The total injected volume is chosen to be equivalent to 10 000 days (approximately
27 years) of operation for the medium injection rate. For comparison purposes, we
also solve the same problem using the commercial multi-phase numerical simulator
Eclipse (Schlumberger 2004). That code solves the full set of coupled multi-phase
flow equations, using control volume discretizations in space and a fully implicit
time-stepping scheme, and is widely considered the industry standard in petroleum
engineering. For comparison purposes, we have programmed the numerical simulator
in a black-oil formulation to ignore capillary pressure, and to use linear relative
permeability functions. For the examples here, we have used a radially symmetric
mode of Eclipse with logarithmic grid spacing, and we have used the vertically
averaged volume fraction to compare to the similarity solutions presented above.
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Figure 2. Comparison between a numerical solution (dashed line) and the similarity solution
for (a) an intermediate injection rate, (b) a low injection rate, and (c) a very low injection rate.

To investigate the possibility of non-radial behaviour due to the invasion of a less
viscous fluid into a more viscous fluid, we have also conducted full three-dimensional
simulations on Cartesian grids for a range of parameters relevant to CO2 injection.
All our results indicate that even when the solution is perturbed, for example by
introduction of a leaky abandoned well within the domain, radial symmetry is
restored in the three-dimensional simulations.

Figure 2 shows results for the three different cases. Figure 2(a) shows results from
the medium injection rate, corresponding to Γ = 0.143. In this case, viscous forces
dominate the displacement process (Nordbotten et al. 2005b), so that the solution is
very close to the analytical expression given in (14) for the case where Γ is negligibly
small. Figure 2(b) uses a lower injection rate (Γ =1.43), while figure 2(c) corresponds
to a very low injection rate and the associated large value of Γ =10. These results
show that the similarity solutions capture the dominant displacement processes well,
and the comparison to the results from Eclipse show excellent agreement across the
full range of Γ values. Note that the Eclipse curves plotted in these figures are based
on vertical integration of the numerically calculated saturations, and subsequent
definition of an effective thickness of the CO2 plume based on complete filling of
the top-most part of the domain (residual saturation is set equal to zero in these
calculations). This is similar to the way the solutions were used in Nordbotten et al.
(2005a, b), and is consistent with an assumption of a sharp interface.
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Figure 3. (a) Dependence of the incompressible similarity solution on the density parameter
Γ . The curves range from Γ = 0 (closest to vertical) to Γ = 100 (closest to horizontal). λ= 10.
(b) Dependence of the incompressible similarity solution on the viscosity ratio λ. The curves
range from λ= 0.1 (closest to vertical) to λ= 100 (closest to horizontal). Γ = 10. (c) Dependence
of the outer limit χ0,h (shown as contour lines) of the incompressible similarity solution on the
dimensionless gravity factor Γ and the viscosity ratio λ.

The next results show more general behaviour patterns in the similarity solutions,
by spanning a range of parameter values for both the dimensionless parameter Γ

and the mobility ratio λ. Figure 3(a) shows the family of curves for a fixed value of
λ=10, with Γ ranging from 0 to 100. These results show that there is little difference
between the solutions for Γ = 0 and Γ = 0.1; the Γ = 0 solution is obtained from (14),
while the solution with Γ = 0.1 is the full similarity solution corresponding to (13).
The similarity solution begins to deviate from the viscous solution when Γ = 1, and
is significantly different for larger values. So the range where the viscous solution is
applicable corresponds to Γ values less than 1. Notice that in these results we interpret
the ‘Γ = 0’ case to mean that Γ is negligibly small, but that a density difference still
exists (as it always does in the case of CO2 injection into brine) and that vertical
segregation of the fluids takes place owing to this density difference. Therefore the
limit of small Γ should be interpreted as the limit of high injection rates. For the
special case of equal densities, no gravity override occurs, and the interface position
may be interpreted as representative of the vertically and angularly averaged fluid
content, rather than a physical location of the interface position. This represents
viscous instabilities in the absence of vertical segregation.
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Figure 4. Dependence of the incompressible miscible similarity solution on the retardation
parameter γ2.

In figure 3(b), the value of Γ is fixed at 10, and the mobility ratio λ is varied
from 0.1 to 100. For the highest values, which correspond to the most unfavourable
ratios, the injected CO2 forms a relatively thin layer at the top of the domain,
showing the combined effect of gravity segregation and strong mobility contrast. These
correspond to the plumes that spread farthest in space. Conversely, for strongly stable
displacements, the profile becomes much more uniform in the vertical, approaching
radial piston displacement as λ becomes small. The dependence of the extent of the
plume (given by the variable χ0,h) on Γ and λ is summarized in figure 3(c). For
the range of values investigated, we see that plume extent is more dependent on the
mobility ratio λ than on the density parameter Γ .

The next result, in figure 4, shows how a drying front develops, when both wet
and dry CO2 are included in the analysis under the assumptions necessary for (25)
and (26). The residual saturations and partitioning fractions are chosen such that γ2

ranges from 0.25 to 0.75, while γ1 = 1. An example leading to γ2 = 0.5 has the residual
saturation set to Sres =0.09 and the partitioning fraction set to β2 = 0.1. Figure 4
indicates that the original invasion front and the drying front are almost identical for
small values of χ . However, at larger values of χ , a clear distinction between the two
can be seen. The fraction of CO2 volume that is ‘wet’ is relatively large, in these cases
ranging from 75 % for the pair γ1 = 1 and γ2 = 0.25, to 25 % for the pair γ1 = 1 and
γ2 = 0.75. The amount of CO2 actually dissolved in the water phase will be a function
of the residual saturation as well as the partitioning parameters and the gravity (Γ )
and mobility (λ) parameters.

Finally, we consider calculations to demonstrate the importance of vertical flow,
which allows for examination of the assumption of vertical equilibrium. This
assumption is discussed in more detail in Appendix D. Figure 5(a) gives several
numerical (Eclipse) solutions, corresponding to cases with different values of vertical
permeability, plotted at different simulation times. The figure also shows one similarity
solution, which coincides with the curve labelled ‘kz > 20 mD’. All the curves in
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Figure 5. (a) Comparison between numerical solutions and the similarity solution for
cases of a low injection rate. The different numerical solutions show the effect of vertical
non-equilibrium. The curves for kz > 20 mD, kz = 0.2 mD are after 50 000 days of injection at
the low injection rate, giving total injection volume of 6 × 105 m3. The remaining curves are
plotted scaled to an identical volume of CO2 for comparison. (b) Estimate of the parameter
δ based on (C 4) for the cases in (a). For comparision, the curves are plotted scaled to an
identical volume of CO2 as in (a). The curve for kz > 20mD is not visible on the plot since it
is orders of magnitude smaller than the other curves.

the figure are scaled to have identical volumes of injected CO2, corresponding to
the amount injected in 1000 days at the rate used in figure 2(b). The horizontal
permeability is 20 mD, so the anisotropy ratio varies from 1 to 1000. The case
with the highest permeability anisotropy is shown in a time series, to assess the
observations following equation (D4) regarding the improvement of the vertical
equilibrium assumption with time. The right-hand side of (D 4) is plotted in
figure 5(b), which indicates, together with visual inspection of figure 5(a), that for δ(r, t)
values below approximately one, the numerical solution lies close to the similarity
solution. This indicates that the parameter δ provides a reasonable guideline for the
applicability of the vertical equilibrium approximation. This is also consistent with
the general idea of ‘shallow’ flow systems discussed in Huppert & Woods (1995), in
that as the plume expands and the horizontal length scale increases, the shallow-flow
assumption becomes progressively better for this system.

5. Conclusions
The solutions presented herein allow fluid interfaces to be computed across a range

of injection conditions, for two-fluid flows under confined aquifer conditions. We
have focused on conditions relevant for injection of CO2 into deep, confined saline
aquifers. For those systems, the injected fluid is always less dense and less viscous
than the resident fluid. The general solutions capture the system behaviour well. In
the limit of viscous domination, the general solution reduces to a simplified solution
corresponding to the solution proposed by Nordbotten et al. (2005b) for practical
CO2 injection scenarios. The present solutions allow for residual saturations, mass
transfer between the two fluids, and development of a drying front behind the main
injection front. Fluid compressibility can also be included in the solutions, although
all results presented in this paper use an assumption of constant fluid properties. A
heuristic analysis provides guidelines to estimate the limit of significant vertical fluxes,
such that the assumption of vertical equilibrium can be quantitatively evaluated.
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Within the constraints of the vertical equilibrium assumption, and the assumption
of a homogeneous, horizontal and confined aquifer, the solution presented herein is
relatively general. The applicability of the solutions to problems of CO2 injection is
demonstrated through comparisons to numerical simulations, which show that the
solutions represent the flow dynamics well. The solutions derived herein can also be
applied to other deep injection systems, including those involving injection of acid
gas (Bachu & Gunter 2004) and deep disposal of hazardous wastes (Smith 1996).

This work was supported in part by BP and the Ford Motor Company through
funding to the Carbon Mitigation Initiative at Princeton University. We thank the
anonymous reviewers for their many helpful suggestions, which have led to significant
improvements in the paper.

Appendix A. Intermediate asymptotic of equation (12)
We wish to investigate the behaviour of the solution h′(χ ,τ ) of (12), in particular

its deviation from the stationary solution h′(χ) of (13). For ease of presentation we
will use the shorthand notation h′(χ ,τ ) = h and h′(χ) = h0.

We will assume that the fluid interface is monotone, such that we have for all χ

and τ
∂h

∂χ
< 0,

∂h0

∂χ
< 0. (A 1)

Define the function

χ ′(χ) = h−1(h0(χ)) (A 2)

as the function relating points χ ′ and χ where the functions h and h0 have equal
values. Now define χm as any point where the difference between χ ′(χ) and χ attains
a local maximum:

|χ ′(χm) − χm|=max
χ

|χ ′(χ) − χ |. (A 3)

Then for 0 <h(χ ′(χm)) < 1 and 0 < h0(χm) < 1, we have the properties that

∂h

∂χ

∣∣∣∣
χ ′(χm)

=
dh0

dχ

∣∣∣∣
χm

,
dχ ′

dχ

∣∣∣∣
χ ′(χm)

= 1,

sign

(
∂2h

∂χ2

∣∣∣∣
χ ′(χm)

− d2h0

dχ2

∣∣∣∣
χm

)
= − sign(χ ′(χm) − χm)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 4)

Now, subtracting (13) from (12) we obtain

τ
∂h

∂τ

∣∣∣∣
χ ′(χm)

(
dh0

dχ

∣∣∣∣
χm

)−1

= [χ ′(χm) − χm]

[
1 − 4Γ λ2h0(χm)

(1 + (λ − 1)h0(χm))2
dh0

dχ

∣∣∣∣
χm

+
4Γ λ(1 − h0(χm))

1 + (λ − 1)h0(χm)

dh0

dχ

∣∣∣∣
χm

]
+

4Γ λh0(χm)(1 − h0(χm))

1 + (λ − 1)h0(χm)

×
(

dh0

dχ

∣∣∣∣
χm

)−1(
χ ′(χm)

∂2h

∂χ2

∣∣∣∣
χ ′(χm)

− χm

d2h0

dχ2

∣∣∣∣
χm

)
. (A 5)

This implies that

∂h

∂τ

∣∣∣∣
χ ′(χm)

(
dh0

dχ

∣∣∣∣
χm

)−1

=
c1

τ
[χ ′(χm) − χm] +

c2

τ

(
∂2h

∂χ2

∣∣∣∣
χ ′(χm)

− d2h0

dχ2

∣∣∣∣
χm

)
, (A 6)
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where the coefficients c1 and c2 are defined as

c1 = 1 − Γ

[
4λ

1 + (λ − 1)h0(χm)

(
λh0(χm)

1 + (λ − 1)h0(χm)
− (1 − h0(χm))

)
dh0

dχ

∣∣∣∣
χm

− 4λh0(χm)(1 − h0(χm))

1 + (λ − 1)h0(χm)

(
dh0

dχ

∣∣∣∣
χm

)−1
d2h0

dχ2

∣∣∣∣
χm

]
, (A 7a)

c2 = χ ′(χm)
4Γ λh0(χm)(1 − h0(χm))

1 + (λ − 1)h0(χm)

(
dh0

dχ

∣∣∣∣
χm

)−1

. (A 7b)

We see that if dh0/dχ and d2h0/dχ2 are bounded, c1 will be a positive coefficient when
Γ <Γcrit, for some value Γcrit dependent on λ, and the properties of the stationary
solution; h0 and dh0/dχ . Also, c2 will be negative under assumption (A 1). In the
following derivation we will assume that Γ is below this critical value. We can now
use inequalities (A 1) as well as properties (A 4) to obtain

∂

∂τ
(χ ′(χm) − χm) =

∂χ ′

∂τ

∣∣∣∣
χm

= −∂h

∂τ

∣∣∣∣
χ ′(χm)

(
∂h0

∂χ

∣∣∣∣
χm

)−1

= − c

τ
(χ ′(χm) − χm) − c2

τ

(
∂2h

∂χ2

∣∣∣∣
χ ′(χm)

− d2h0

dχ2

∣∣∣∣
χm

)
. (A 8)

From this equation and the last property of (A 4), we see that the maximum difference
between the points χ ′ and χ is strictly decreasing when the maximum difference is
not at the endpoints of the domain.

If χm is at the top boundary of the domain, then h(χm) = 0. We can again subtract
(13) from (12) as we did above to obtain

∂h

∂τ

∣∣∣∣
χ ′(χm)

(
dh0

dχ

∣∣∣∣
χm

)−1

=
1

τ
[χ ′(χm) − χm]+

4Γ λ

τ

(
χ ′(χm)

∂h

∂χ

∣∣∣∣
χ ′(χm)

− χm

dh0

dχ

∣∣∣∣
χm

)
. (A 9)

Since χm is a local maximum, sign (∂h/∂χ − dh0/dχ) = sign(χ ′(χm) − χm). Thus the
equivalent expression to (A 8) for the top boundary is

∂

∂τ
χ ′(χm) > −1

τ

(
1 + 4Γ λ

dh0

dχ

∣∣∣∣
χm

)
[χ ′(χm) − χm] when χ ′(χm) < χm,

∂

∂τ
χ ′(χm) < −1

τ

(
1 + 4Γ λ

dh0

dχ

∣∣∣∣
χm

)
[χ ′(χm) − χm] when χ ′(χm) > χm.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 10)

If χm is at the bottom boundary of the domain, then h(χm) = 1, and sign (∂h/∂χ −
dh0/dχ) = sign(χm − χ ′(χm)). By the same arguments as for the top boundary, the
equivalent expression to (A 8) for the bottom boundary is

∂

∂τ
χ ′(χm) > −1

τ

(
1 − 4Γ

dh0

dχ

∣∣∣∣
χm

)
[χ ′(χm) − χm] when χ ′(χm) < χm,

∂

∂τ
χ ′(χm) < −1

τ

(
1 − 4Γ

dh0

dχ

∣∣∣∣
χm

)
[χ ′(χm) − χm] when χ ′(χm) > χm.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A 11)

From this we can conclude that for Γ < Γcrit, all maxima of |χ ′ − χ | must be strictly
decreasing, independent of whether the maxima are internal or on the boundary.

In sum, we have shown that for sufficiently small Γ , dependent on λ, and h0,
equation (12) has the stable stationary solution given by (13). Equations (A 8), (A 10)
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and (A 11) show that all local maxima of the function |χ ′ − χ | must be decreasing,
and we therefore have the conclusion that as τ goes to infinity the solution h′(χ ,τ ), if
it is monotone, will converge to h′(χ).

Appendix B. Derivation of mass transfer factors
In (18), we introduced the factors γ1 and γ2 representing the effects of mass transfer

at the interface between water and wet CO2 and the interface between wet CO2 and
dry CO2, respectively. For completeness, we derive those factors in this Appendix.

Consider first the second mass transfer factor, γ2, representing the relationship
between flow of dry CO2 and the movement of the interface between dry CO2 and
the composite region composed of wet CO2 and residual brine. For this interface, we
can write the following mass balance for CO2:

φ(vc − vI ) = φ(vcw − vI )(1 − Sres)(1 − β2) − φvISresβ1. (B 1)

Here, vc and vcw refer to the velocity of dry and wet CO2, respectively, while vI

represents the velocity of the interface. The left-hand side of (B 1) refers to the mass
flux of CO2 in the dry CO2 phase into the interface (interface i(r, t) in figure 1). The
first term on the right-hand side is the outflow of CO2 carried by the wet CO2 phase
away from the interface, while the last term is CO2 recovered from the evaporating
saturated residual water. A similar balance can be written for the fluxes of water into
and out of the interface i(r, t), and this takes the following form,

0 = φ(vcw − vI )(1 − Sres)β2 − φvISres(1 − β1). (B 2)

Because there is no flux of water into the interface from the left side, the left-hand
side of equation (B 2) is zero. The first term on the right-hand side represents outflow
of water in the wet CO2 phase, while the last term represents water evaporating into
the CO2 phase from the residual saturation. Combining these equations allows us to
define the retardation factor γ2 as used in (18). It takes the following form,

γ2 = (1 − Sres)
vI

vcw

=

[
1 +

(1 − β1)Sres

(1 − Sres)β2

]−1

. (B 3)

Similarly, for the first mass transfer factor, γ1, representing the relationship between
flow of water and the movement of the interface between water and the composite
region, we have the mass conservation equation for the CO2 phase

φ(vcw − vI )(1 − Sres)(1 − β2) − φvISresβ1 = 0, (B 4)

where now vI refers to the interface between water and the composite region. For the
water phase, the analogous equation is

φ(vcw − vI )(1 − Sres)β2 − φvISres(1 − β1) = φ(vw − vI ). (B 5)

Combined, (B 4) and (B 5) give the following mass transfer factor

γ1 = (1 − Sres)
vI

vw

=

[
1 +

β1Sres

(1 − Sres)(1 − β2)

]−1

. (B 6)

Appendix C. Pressure-dependent densities and viscosities
The analysis presented for the incompressible cases can be extended to the

more general case of pressure-dependent densities and viscosities, although this
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is significantly more complicated, and for many practical problems not necessary
(Nordbotten et al. 2005a, b). The approach is analogous to the developments already
presented, so in this section the corresponding generalizations of the earlier equations
are presented, and the overall approach is briefly outlined.

To begin, the general equation for pressure distributions in the vertical may be
written as

p(r, t, 0) = p(r, t, H ) −
i(r,t)∫
0

[
ρc(p(r, t, z))g +

qc,z(r, t, z)µc(p(r, t, z))

kz(r, z)

]
dz

−
h(r,t)∫

i(r,t)

[
ρcw(p(r, t, z))g +

qcw,z(r, t, z)µcw(p(r, t, z))

kz(r, z)

]
dz

−
H∫

h(r,t)

[
ρw(p(r, t, z))g +

qw,z(r, t, z)µw(p(r, t, z))

kz(r, z)

]
dz. (C 1)

In (C 1), the pressure dependence of the density and viscosity are noted explicitly. The
assumption of vertical equilibrium, which is appropriate when the changes in pressure
in the vertical owing to vertical flow are small compared to the density contributions,
and are small compared to horizontal flow components, allows (C 2) to be simplified as

p(r, t, 0) = p(r, t, H ) −
i(r,t)∫
0

ρc(p(r, t, z))g dz

−
h(r,t)∫

i(r,t)

ρcw(p(r, t, z))g dz −
H∫

h(r,t)

ρw(p(r, t, z))g dz. (C 2)

This implies that if, for example, the bottom pressure pH(r,t) = p(r,t,H) is known for
all r , then the pressure is known everywhere, once i and h are known. We therefore take

p(r, t, z) = p(pH (r, t), i(r, t), h(r, t), z), (C 3)

as a given function.
Given the assumptions of vertical equilibrium and radial symmetry about the

injection well, the mass flows of the three fluids through a cylindrical surface at an
arbitrary radius r may be written as

Qw(r, t) = −2πr

H∫
h(r,t)

ρw(p(r, t, z))
kr (z)

µw(p(r, t, z))

∂

∂r
p(r, t, z) dz,

Qcw(r, t) = −2πr

h(r,t)∫
i(r,t)

ρcw(p(r, t, z))
kr (z)

µcw(p(r, t, z))

∂

∂r
p(r, t, z) dz,

Qc(r, t) = −2πr

i(r,t)∫
0

ρc(p(r, t, z))
kr (z)

µc(p(r, t, z))

∂

∂r
p(r, t, z) dz.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 4)

Given further the assumptions of essentially horizontal flow, the existence of residual
saturation in the wet CO2 region, and the dissolution of CO2 into the residual water
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in the wet CO2 zone, a mass balance statement can be written for each of the three
regions. The form of these equations is as follows,

∂

∂t

H∫
h(r,t)

ϕρwdz =
−γ1

(1 − Sres)2πr

∂

∂r
Qw(r, t),

∂

∂t

h(r,t)∫
i(r,t)

ϕρcwdz =
−1

(1 − Sres)2πr

∂

∂r
Qcw(r, t) − 1 − γ2

2πr

∂

∂r
Qc(r, t)

− 1 − γ1

(1 − Sres)2πr

∂

∂r
Qw(r, t),

∂

∂t

i(r,t)∫
0

ϕρcdz =
−γ2

2πr

∂

∂r
Qc(r, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 5)

These equations have a stationary solution in the similarity variable ξ = r2/t:

Qw(ξ ) = −4πξ

H∫
h(ξ )

ρw(p(ξ, z))
kr (z)

µw(p(ξ, t))

∂

∂ξ
p(ξ, z) dz,

Qc(ξ ) = −4πξ

i(ξ )∫
0

ρc(p(ξ, z))
kr (z)

µc(p(ξ, t))

∂

∂ξ
p(ξ, z) dz,

Qcw(ξ ) = −4πξ

h(ξ )∫
i(ξ )

ρcw(p(ξ, z))
kr (z)

µcw(p(ξ, t))

∂

∂ξ
p(ξ, z) dz,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 6)

and

∂

∂ξ

H∫
h(ξ )

ϕρw(p(ξ, z)) dz =
−γ1

(1 − Sres)πξ

∂

∂ξ
Qw(ξ ),

∂

∂ξ

h(ξ )∫
i(ξ )

ϕρcw(p(ξ, z)) dz =
−1

(1 − Sres)πξ

∂

∂ξ
Qcw(ξ ) − 1 − γ2

πξ

∂

∂ξ
Qc(ξ )

− 1 − γ1

(1 − Sres)πξ

∂

∂ξ
Qw(ξ ),

∂

∂ξ

i(ξ )∫
0

ϕρc(p(ξ, z)) dz =
−γ2

πξ

∂

∂ξ
Qc(ξ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 7)

Equations (C 6) and (C 7) together with (C 3) form a system of six first-order
ordinary differential equations for the dependent variables Qc, Qcw, Qw, p, i and
h, thus showing that the full equations exhibit self-similar solutions given the
vertical equilibrium assumption and appropriate boundary conditions. The boundary
conditions that satisfy the scaling ξ = r2/t are as in the preceding cases, apart from all
volume balances being replace by mass balance, based on a constant mass injection
rate.
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Solving this system of equations is more involved than those in §§ 3.1 and 3.2, since
the pressure solution will feed back into fluid properties. We propose the following
iterative solution technique:

0. Use the solution to (20) as an initial guess, with pressure given by the initial
pressure.

1. Update the fluid properties (density and viscosity) corresponding to the pressure
solution from the previous iteration.

2. Solve (C 7) numerically, holding the updated fluid properties constant.
3. Repeat from step 1 until converged.

Appendix D. Vertical equilibrium
The assumption of vertical equilibrium can be analysed a posteriori. We will present

the arguments for this in the setting of the incompressible case without mass transfer
above, to keep the notation simple. Let δ(r, t) be a measure of the error introduced
by the vertical equilibrium assumption,

δ(r, t) =
p(r, t, 0) − pex(r, t, 0)

p(r, t, H ) − p(r, t, 0)
, (D 1)

where subscript ex denotes the top pressure obtained by application of (1) to a
given flow field and bottom pressure, while p without subscript indicates the pressure
obtained from (2).

The numerator of (D 1) can be estimated from the flow fields implied from the
interface. For a given depth z0, the fluid injected below z0 must exceed the total
vertical flux inside the plume at this depth unless the plume contracts at some height,

H − z0

H
Qwell � qc,zπr2(z0, t). (D 2)

Here, r(z0, t) is the radius of the plume at a given depth, which is obtained by inverting
the function h(r, t), and qc,z is interpreted as the horizontally averaged vertical flux
inside the plume. Inequality (D 2) can be used to approximate the first integral in (1),
which on substitution into (D 1) gives

δ(z0, t) �
Qwell(H − z0)z0

πr2(z0, t)H

µc

kzkr,c

1

ρcgz0 + ρwg(H − z0)
. (D 3)

This can be reformulated using radius r as a primary variable,

δ(r, t) �
Qwell(H − h(r, t))h(r, t)

πr2H

µc

kzkr,c

1

ρcgh(r, t) + ρwg(H − h(r, t))
. (D 4)

This expression for δ(r, t) is based on several approximations, and should be
considered as an indicator of the importance of vertical disequilibrium, rather than
a rigid justification for the application of vertical equilibrium. Acceptable values for
δ(r, t) are discussed in § 4.

By inspection of (D 4), we see that for a fixed radius, δ(r, t) is a decreasing function
of time, since h(r, t) is an increasing function bounded above by H . This implies that
the validity of the vertical equilibrium assumption increases with time, and thus we
may expect the similarity solution to more closely mimic the true solution for late
times. Similarly, we see that the vertical permeability appears in the denominator of
(D 4); thus as expected, the vertical equilibrium assumption is most applicable when
the vertical permeability is not too low.
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